Modeling the Conditional Volatility Asymmetry of Business Cycles in Four OECD Countries: A Multivariate GARCH Approach

نویسندگان

  • K Ho
  • A Tsui
  • Zhaoyong Zhang
  • Edith Cowan
  • Kin-Yip Ho
  • A. K. Tsui
  • Z. Y. Zhang
چکیده

There are many studies on the business cycle indicators in the past decades, but mostly focusing on the asymmetric and non-linear features of business cycles incorporated into the conditional mean equation rather than the conditional variance formulation. Recently, the hypothesis of volatility asymmetry in business cycle indicators has been re-examined by, for instance, Ho and Tsui (2003 and 2004) using univariate asymmetric power ARCH (APARCH) and EGARCH models. However, the main drawback of univariate GARCH analysis is that it fails to capture the co-movement of macroeconomic variables. These co-movement relationships are important issues emphasised by the business cycle researchers, yet not much work has been done on formally modelling co-movements of asymmetric conditional volatilities in the context of multivariate GARCH setting. Our study extends the constant conditional correlation framework proposed by Bollerslev (1990) and the time-varying conditional correlation approach by Tse and Tsui (2002). We propose three new bivariate asymmetric GARCH models to accommodate the individual conditional heteroskedastic effects and the possibly varying conditional correlation relationships of asymmetric volatilities of the business cycles indicators in the selected OECD countries including Canada, Italy, the UK and the US. Using indices of industrial production as proxies for business cycles indicators, we detect statistically significant evidence of asymmetric conditional volatility in the UK and US. Additionally, we find that the conditional correlations are significantly time-varying, and that the strength of varying correlations may be linked to the degree of economic integration between the countries. These findings have the following implications: • if business cycles are conditionally heteroskedastic and exhibit volatility asymmetry, then any theory without such properties is inadequate. • the GARCH structure is consistent with the hypothesis of rational expectations in macroeconomics as rational economic agents make decisions based on all available information (see Hong and Lee, 2001 for details). • since movements in the financial markets are inextricably linked to the overall health of the economy, adequate accommodation of macroeconomic uncertainty such as conditional volatilities of business cycles would help researchers understand more about the causes of changes in financial market volatilities, and • it is vital to understand the domestic macroeconomic policy implications of asymmetric volatility and the corresponding policy co-ordinations among major international trading partners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Volatility Asymmetry of Business Cycles: Evidence from Four Oecd Countries

Most studies of business cycle exclude the dimension of asymmetric conditional volatility. In this paper, we propose three bivariate asymmetric GARCH models to capture the properties of conditional volatility and time-varying conditional correlations of business cycle indicators in four OECD countries. Our study extends the constant conditional correlation framework proposed by Bollerslev (1990...

متن کامل

Modelling Volatility Asymmetry of Business Cycles in the U.S

Most studies on the asymmetric and non-linear properties of US business cycles exclude the dimension of asymmetric conditional volatility. Engle (1982) proposes an autoregressive conditional heteroskedasticity (ARCH) model to capture the time-varying volatility of inflation rates in the United Kingdom. Weiss (1984) finds evidence of ARCH in the US industrial production. The ARCH model is then e...

متن کامل

Modeling Gold Volatility: Realized GARCH Approach

F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...

متن کامل

Modeling the Impact of News on volatility The Case of Iran

In this paper various ARCH models and relevant news impact curves including a partially nonparametric (PNP) one are compared and estimated with daily Iran stock return data. Diagnostic tests imply the asymmetry of the volatility response to news. The EGARCH model, which passes all the tests and appears relatively matching with the asymmetry in the data, seems to be the most adequate characteriz...

متن کامل

Assessing the Exchange Rate Fluctuation on Tehrans Stock Market Price: A GARCH Application

This paper empirically investigates the exchange rate effects of Iranian Rial against Dollar (Rial vs.US) on stock prices in Iran. The sample period for the study has been taken from March 20, 2004 to March 20, 2010 using daily nominal exchange rate of Rial /us and daily closing values of Tehran Stock Exchange. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model has been use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011